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Abstract—Semantic SLAM is an important field in autonomous
driving and intelligent agents, which can enable robots to achieve
high-level navigation tasks, obtain simple cognition or reasoning
ability and achieve language-based human-robot-interaction. In
this paper, we built a system to creat a semantic 3D map by
combining 3D point cloud from ORB SLAM [1], [2] with semantic
segmentation information from Convolutional Neural Network
model PSPNet-101 [3] for large-scale environments. Besides, a
new dataset for KITTI [4] sequences has been built, which
contains the GPS information and labels of landmarks from
Google Map in related streets of the sequences. Moreover, we
find a way to associate the real-world landmark with point cloud
map and built a topological map based on semantic map.

Index Terms—Semantic SLAM, Visual SLAM, Large-Scale
SLAM, Semantic Segmentation, Landmark-level Semantic Map-
ping.

I. INTRODUCTION

Semantic 3D environments are increasingly important in
multiple fields, especially in robotics. Nowadays, 3D mapping
methods only contains odometry or geometrical information of
surrounding environments without semantic meanings, which
cannot enable robots to infer more information for specific
tasks and makes it difficult for human-robot interaction. A map
with semantic information allows robots to fully understand
their environments, and generalize its navigation capability,
just as human does, and achieves higher-level tasks. Semantic
information will also enable robots to obtain simple cognition
or reasoning ability. Robot perception within semantic infor-
mation also makes it possible for robots to achieve language-
based human-robot interaction tasks.

Semantic Simultaneously Localization and Mapping
(SLAM) system mainly involves the 3D mapping and
semantic segmentation. Recently, researches on semantic
SLAM are mainly focusing on indoor environments or Lidar
based SLAM system for outdoor environments. Visual based
Semantic SLAM is mainly achieved by using RGB-Depth
(RGB-D) camera, which can be greatly affected by lighting
conditions and not well-suited for outdoor environments.
Lidar is more suitable in such environment, but it is much
more costly than camera-based SLAM system. And Lidar
contains less information than visual information, which
makes the study in camera-based semantic SLAM system
more meaningful.

The code of this project has been opened in GitHub:
https://github.com/1989Ryan/Semantic_SLAM/

We were inspired by human visual navigation system.
Human navigation system greatly relies on visual perception
since the visual images contain considerable information such
as odometry, geometrical structures, and semantic meanings.
Our navigation from one place to another is mainly based on
landmark level semantic meanings, visual features and their
topological relationship. In our system, we use features based
on Monocular Visual SLAM system-ORB SLAM2 [1]. This
system is performed by using Oriented FAST and Rotated
BRIEF (ORB) features [5], which has good robustness for
moving condition and good real-time performances. It can be
used in multiple scenes of outdoor environments with great
performance in loop closing. We use ORB-SLAM to extract
visual features for re-localization. The semantic information is
obtained by Deep Neural Network (DNN). We use PSPNet-
101 model [3] for pixel-level image semantic segmentation
with 19 different semantic labels, including vehicles, buildings,
vegetation, sidewalks and roads. The semantic information is
then associated with the point cloud map at pixel level. With
semantic meaning, we associate the building landmarks with
semantic point cloud. We associate the landmarks obtained
from Google Map with our semantic 3D map for urban
area navigation. It can achieve landmark-based re-localization
without GPS information.

The contributions of this paper are summarized as follows:
• We developed a system to build a semantic 3D map by

fusing visual SLAM map with Semantic Segmentation
information for large-scale environments.

• We developed a new dataset for KITTI [4] sequences,
containing the GPS information and labels of landmarks
from Google Map in related streets of the sequences.

• We developed a way to associate the real-world landmark
with point cloud map and built a topological map based
on semantic map.

This paper is organized as follows: Section 2 introduce the
related works in semantic segmentation, SLAM and seman-
tic SLAM. Section 3 describes the details of our proposed
methodologies. Section 4 describes experiments in KITTI
dataset and analyzes our experiments results. Finally, the
conclusions are drawn in Section 5.

II. RELATED WORK

The goal of semantic SLAM is to construct semantically
meaningful maps where the semantic meanings are attached to
the entities by combining geometric and semantic information.
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SLAM is implemented as a method to rebuild the 3D map of
an unknown environment and semantic segmentation is used
to extract semantic features.

SLAM systems depend on the input provided by different
kinds of sensors for geometric 3D map and simultaneous
estimation of the position and orientation. They can be mainly
divided into three categories based on the sensors used for
localization, i.e. Lidar-based SLAM, odometry directly pro-
vided method and visual SLAM. The first one is Lidar-based
SLAM methods. Laser ranging systems are accurate active
sensors. Bosse and Zlot [6] proposed a method to produce
locally accurate maps by matching geometric structures of
local point clusters using a 2-axis Lidar. Zhang and Singh
[7] developed Lidar odometry and mapping (LOAM) approach
which estimates odometry and motion of vehicle and produces
3D maps in real-time. However, these methods have trouble
to accurately map or localize if there are few structural
features in current environments. The second category is to
be provided the odometry directly using independent position
estimation sensors, e.g. GPS/INS. It is the most commonly
applied to build large-scale 3D maps for autonomous vehicle
[8]. Although this method is capable of making improvement
in the accuracy of mapping, it often costs a lot due to the
expensive sensors and has limitations in indoor applications
of mobile robotics [9]. Many recent researches focus on using
visual information solely, which is specifically referred to as
visual SLAM. This method has been widely adopted in the
field of computer vision, robotics, and AR [10]. Davison et
al [11] proposed the first monocular visual SLAM system
in 2007, named MonoSLAM, which only uses a monocular
camera to estimate 3D trajectory. To solve the problem of the
computational cost in MonoSLAM, PTAM [12] was proposed
and in 2015. Mur-Artal and Tards proposed ORB-SLAM [1],
[2], which is one of visual SLAM systems with full sensor
support and best performance, with applying ORB features in
parallel tracking, mapping, and loop closure detection, and
using pose graph optimization and bundle adjustment [13]
based optimization. Another kind of visual SLAM systems,
unlike feature-based methods mentioned above, directly uses
images as input without any abstraction with descriptors
or handcrafted feature detectors, called direct methods [14].
DTAM [15], in which tracking is implemented by associating
the input image with synthetic view images generated from
the reconstructed map, and LSD-SLAM [16], which follows
the idea from semidense VO [17], are the leading strategies in
direct methods. DSO [18] combines the minimum photometric
error model with the joint optimization method of model
parameters. In this paper, our proposed model mainly based
on ORB-SLAM.

Semantic segmentation is another challenging task in
computer vision. Motivated by the development of power-
ful deep neural networks [19]–[22], semantic segmentation
achieves tremendous progress inspired by substituting the
fully-connected layer in classification for the convolution layer
[23]. Farabet et al. [24] adopted the multi-scale convolutional
network to extract multi-scale features from the image pyramid

(Laplacian pyramid version of the input image). Couprie et al.
[25] adopted a similar approach to learn multi-scale features
with image depth information. In [26], multi-scale patches for
object parsing were generated to achieve segmentation and
classification for each patch at the same time and aggregates
them to infer objects. As the development of enhancement of
feature based methods [27] which extract features at multi-
scale, Zhao et al. [3] proposed pyramid scene parsing network
(PSPNet) for semantic segmentation, which allows multi-scale
feature ensembling. It concatenates the feature maps with
up-sampled output of parallel pooling layers and involves
information with different pyramid scales, varying among
different sub-regions. This method achieves a practical system
for state-of-the-art semantic segmentation and scene parsing
including all crucial implementation details.

Semantic mapping provides an abstraction of space and
a means for humanrobot interaction. According to [28], our
research can be categorized into outdoors interpretation. Multi-
ple methods have been proposed to confront with the challenge
of semantic mapping in outdoor environment. The method
proposed in [29] was the early work utilizing stereo vision
and classifying image to separate the traversable and non-
traversable scenes with SVM. Furthermore, the algorithm
described in [30] generated an efficient and accurate dense
3D reconstruction with associated semantic labels. Conditional
Random Field (CRF) framework was applied to operate on
stereo images to estimate labels and annotate the 3D volume.
Cheng et al. [31] applied ORB-SLAM to get real-scale 3D
visual maps and CRF-RNN algorithm for semantic segmenta-
tion. In [32], this challenge was solved by combining the state-
of-the-art deep learning algorithms and semi-dense SLAM
based on a monocular camera. 2D semantic information are
transferred to 3D mapping via correspondence between con-
nective Keyframes with spatial consistency. However, there
are few works about associating the real-world landmark with
semantic 3D map for task-based navigation and human-robot
interaction.

III. APPROACH

A. System overview

Our Semantic SLAM system uses monocular camera as
the main sensor and focuses on large-scale urban areas. As
shown in the flowchart, our system can not only reconstruct
the 3D environments using ORB feature, but also make it
possible for GPS data fusion, map re-utilization and real time
re-localization and landmark based localization. The flowchart
of whole system is shown in the figure 1.

First, the image is segmented by CNN based segmentation
algorithm. The pixel-level semantic mapping result and current
frame will then be sent to the SLAM system for environment
reconstruction. The geometrical environment is reconstructed
by ORB SLAM, in which the point cloud is generated by
corner ORB features in the current frame. In the SLAM sys-
tem, the pixel-level semantic information will associate with
the map point using Bayesian update rule, which will update
probability distribution of each map point for each observation



Fig. 1. The flowchart of whole system.

in a frame. Then the landmarks will be projected in the
SLAM map and be associated with nearest keyframes saved
in SLAM system. The map can be reutilized for landmark-
level re-localization without GPS information. We also provide
methods to build topological reachable relationship for each
landmark, which will be more convenient for robots to achieve
landmark-level self-navigation.

B. Semantic mapping

1) Semantic segmentation: The aim of semantic segmen-
tation is to correctly classify each pixel for their semantic
labels. In this work, we choose the PSPNet-101 model [3]
for image segmentation and TensorRT for real time inference
acceleration.

2) ORB SLAM2: The 3D reconstruction is achieved by
ORB SLAM [1], an open-source visual-feature-based state-
of-the-art SLAM system. ORB SLAM has good real time
performance with fantastic loop closing. We use ORB SLAM
for 3D reconstruction and trajectory estimation. There are three
threads, i.e. tracking, local mapping and loop closing, run
parallelly in the ORB SLAM system.

3) Real time data fusion: The data fusion step is trying to
associate the semantic meaning with each map point in SLAM
system. In this step, we try to use Bayesian update rule to
update the probability distribution of semantic label of each
map point.

First, the scores over 19 labels at each pixel will be sent
to SLAM system. In ORB SLAM system, the good feature
point will be saved and transformed in the point cloud. There
will be a transform relationship between those feature points
in 3D point cloud coordinate system and in camera coordinate
system. Transformation relationship between 3D point cloud
system and the camera coordinates is shown below: u

v
w

 = Tpointcloud2camera


xm
ym
zm
1

 (1)

[
uc
vc

]
=

[
u
w
v
w

]
(2)

where (xm, ym, zm) are the positions of the map point in 3D
map coordinates. Tpointcloud2camera is the parametric matrix
which transfers the position of point cloud to the position in

camera coordinates. (uc, vc) are camera pixel in camera coor-
dinates that corresponds to the map point (xm, ym, zm). After
the feature point being projected to the camera coordinates,
the probability distribution of 19 labels of each feature points
will be given as shown below:

Lm(xm, ym, zm) = Fs(uc, vc) (3)

where Fs is the probability distribution of each label
in current frame after semantic segmentation section, and
Lm(xm, ym, zm) represents the label of the map point in
(xm, ym, zm). Moreover, since each feature point can be
observed in different frames, data fusion method is applied
in different observation. The multi-observation data fusion by
using Bayesian update is performed, as shown below:

p(lml |F1:k, P1:k) =
1

Z
p(lmk |Fk, Pk)p(l

m
k−1|F1:k, P1:k) (4)

Z =

19∑
m=1

p(lmk |Fk, Pk)p(l
m
k−1|F1:k, P1:k) (5)

where Z is the normalization constant and lmk denotes the
labels of map point m at frame k. p(lml |F1:k, P1:k) denotes
the cumulative probability distribution from frame 1 to frame
k, respectively. In this equation, the probability distribution is
the result of previous distribution update with newly upcoming
frame and point cloud. The probability distribution of each
feature point is saved in ORB SLAM system. And the eventual
label of each map point is searched by maximizing the
probability, which is shown in the equation below.

Lp(m) = argmaxlmp(l
m|F, P ) (6)

where m denotes a single map point, and lm represents the
semantic label of map point m. During the real time fusion,
each map point will contain one semantic label and a semantic
probability distribution.

C. GPS fusion

To associate the building landmarks with the point cloud at
pixel level to generate the semantic point cloud., we need to
convert WGS84 coordinates of building landmarks, which is
used in Google map, into the same coordinate system with the
point cloud. However, the longitude and latitude in the WGS84
obtained from google map API is not suitable to directly
convert. Thus, we first convert the coordinate to Cartesian
coordinate, in which the unit is meter. After converting the



GPS information the keyframes to Cartesian coordinates, we
adopted the method proposed by Besl and McKay [33] to unify
the coordinate system with point cloud. Every 30 frames we
took the current frame as the sampling point and added the
corresponding pose and the longitude and latitude to the two
global samplers. At the end, we used SVD to compute the best
rotation between these two point sets in global samplers. Here
we assume PA as the set of points in Cartesian coordinate,
PB as the set of points in pose coordinate. centroidA is the
centroid of PA and centroidB is the centroid of PB . As the
scales of the two coordinates are different, scale transformation
is also required. The Rotation matrix R and translation matrix
T is computed as:

H =

N∑
i=1

(P i
A − centroidA)(P i

B − centroidB)T (7)

[U, S, V ] = SV D(H) (8)

R =
1

λ
V UT (9)

T = − 1

λ
R · centroidA + centroidB (10)

where λ is the scale multiplier since the scale of different
coordinates might be different, which is calculated as:

λ = average
‖PA − centroidA‖
‖PB − centroidB‖

(11)

After obtaining R and T , every point in Cartesian coordinate,
which was the position of the building landmarks, can be
converted to the coordinate system of the point clouds as:

B = R ·A+ T (12)

where A is the point in Cartesian coordinate, which represents
the position of landmark, and B is the point in point clouds
coordinate system. Then we can find the corresponding point
in point cloud map and fuse semantic label with it.

D. Post process

After the real time process, we will perform a post pro-
cess to optimize the result and get more structured semantic
information. In this process, the clustering method will be
applied in different semantic labels for object-level semantic
map. Landmarks will also be fused in feature points and can
be used for landmark-level localization and navigation.

1) Landmark level data fusion: We assume that the rela-
tionship between the landmarks and feature points is fuzzy
membership. In one area, the landmark is important for human
navigation since the target of human navigation is mainly
assigned by landmark. With landmark GPS information and
semantic labels, we can make landmark-level data fusion with
our 3D reconstruction result, which will be more convenient
for task-oriented navigation problem. We will release those
datasets with our open-source code.

We use a fuzzy-mathematics-based method for landmark
data fusion. In this method, we will not focus on the accuracy

of the location of the landmark, but the membership distribu-
tion of the landmark location. Since according to the human
cognitive custom, the concept of the location of landmarks are
actually a fuzzy concept. This allows the robot to define the
position of landmarks in the human’s way. We try to eval-
uate the location membership based on Gaussian probability
distribution. If the place is physically near to the landmark,
the membership of such place will be higher regarding to the
Gaussian distribution. The membership is defined as shown
below:

m(x, y) = G(x, y, xl, yl, σ) (13)

where the m(x, y) denotes the membership of location at
(x, y). G(x, y, xl, yl, σ) denotes the 2D Gaussian probability
density function (PDF). (xl, yl) denotes the landmark location,
σ denotes the standard deviation of the Gaussian distribution.
The distribution will be inserted in the semantic map and be
associated with the trajectory for real time landmark-based
localization.

2) Topological semantic mapping: The semantic SLAM
can also generate a topological semantic map which only
contains reachable relationships between landmarks and their
geometrical relationships. There will be only edges and nodes
in the semantic map and be more suitable for global path
planning.

The topological map is built through the following steps.
First, after the mapping process in SLAM system, the trajec-
tory of camera will be saved. The landmark will be associated
with its closest key frame. Second, there will be two kinds of
key frame that are saved, i.e. the key frames associated with
landmarks and the key frames in where to turn. Third, the
map will be optimized if the place is visited for more than
one times. The previous nodes will be fused with the new
node if they represent the same location or landmark. The
Topological semantic map is shown in the figure 3.

IV. EXPERIMENTS

We designed experiments mainly based on the KITTI
dataset, which is available to the public and mainly recorded
at the urban area. Based on the GPS information recorded in
the KITTI raw data, we record the landmark GPS information
through Google Map. The dataset contains longitude, latitude
and true name of landmarks. We record the sequences 00 to 10
for evaluation and testing. It will be released to the public soon.
Besides, we evaluate the quantitative benchmark of the system
in real-time performance. The experiments were designed
by using ROS and Keras, our computing platform involves
Intel Core i7 CPU and NVIDIA GeForce GTX 1080Ti GPU
platform.

A. Dataset

The KITTI sequences have a large number of outdoor
environments at urban areas. We choose sequences 00 to 10
to evaluate the overall quality of our system. The data we use
in our system is mainly GPS information and images. We use
the RGB images from right camera to simulate the monocular
camera. We do not fully rely on GPS information since we





(a) sequence 02 (b) sequence 09 (c) sequence 05

Fig. 2. GPS-SLAM transformation result. Figures on the top shows ground truth of GPS positions and figures below shows the transformed positions.
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Fig. 3. Visualization of topological mapping.

just use the GPS information every 30 frames to simulate poor
GPS devices in real world implementation.

B. Implementation Details

First, our experiments are mainly based on Robotic Op-
erating System (ROS), which is a framework for multiple
processes communications in robots. We use ROS node to
simulate the camera ROS drive and GPS device drive. For
all experiments, the transformation relationship between point
cloud coordinates and camera coordinates is estimated in
ORB SLAM. In GPS fusion and transformation, we use

sampling rather than all GPS information to reduce the relative
error and simulate the poor GPS signals. We sample the
GPS information every 30 frames. Semantic Segmentation is
implemented in TensorFlow and Tensor RT. The model is
trained in Cityscape datasets.

C. Qualitative Evaluation

In order to evaluate the semantic SLAM system, multiple
large-scale outdoor sequences in KITTI datasets were used.
The qualitative results of our system are presented in the figure
4. Each figure shows multiple views of the whole map. The



TABLE I
TIME ANALYSIS RESULT

Method Frequency/Time
PSPNet-101 1.8Hz

ORB SLAM2 15.1Hz
Data Association 0.0005s

landmark distribution and topological semantic map is also
shown in the figure. It shows that our system can successfully
fuse the semantic labels into the point cloud generated by
ORB SLAM, thereby generating the semantic 3D point cloud
with 19 labels. Moreover, the landmark level data fusion is
preformed and got good topological relationships in different
sequences. It will be useful for large-scale landmark-based
navigation tasks or human-robot interaction.

Experiment shows that semantic information will allow
the robots to know more about the environments not only
the meaningless features but also their semantic meanings.
Besides, based on semantic meaning, the robots will re-
localize themselves with more robust features such as features
on buildings, roads, sidewalks, walls, rather than vehicles,
trees, person, etc. We choose sequence 02, 05 and 09 for
example. The result is shown in figure 4.

D. Time Analysis

The experiments were designed by using ROS and Keras,
our computing platform involves Intel Core i7 CPU and
NVIDIA GeForce GTX 1080Ti GPU platform.

We have tested the system run time when they work
together. The overall system can run in nearly 1.8Hz in our
computing system. Since the semantic segmentation model we
use is based on PSPNet-101 which is a large CNN model
without acceleration, we can reach better performance if the
model is accelerated in FPGA or TensorRT. The overall run
time performance of our system is shown in the table I.

V. CONCLUSION

In this paper, a Monocular camera-based semantic SLAM
system with landmarks is developed for large-scale outdoor
localization and navigation. Existing works have focused only
on accuracy or real-time performance, which might be difficult
for real improvement of overall cognitive level of robots. We
conducted a dataset based on KITTI GPS information for land-
mark based semantic fusion and topological semantic map-
ping. A 3D semantic point cloud with landmark information is
built by our system using the dataset we mentioned. It contains
real name and position of landmarks, multiple semantic labels,
which makes it possible for offline language-based human-
robot-interaction, task-oriented navigation or landmark-level
localization. The 3D map is fused with related semantic
information by using coordinate system transformation and
Bayesian update. The landmark data fusion is achieved by
fuzzy membership based on Gaussian distribution, by which
the topological semantic map is built.

Our paper provides several compelling fields for future
work. We are planning to improve the visual SLAM system to

adapt it to localization and navigation in a variety of lighting
conditions. Furthermore, we would like to develop a robot
navigation system based on landmark topological maps and
human-robot-interaction. How to improve the localization per-
formance by using semantic information is also an interesting
area worthy of future study.

ACKNOWLEDGMENT

This work was supported in part by the National Science
and Technology Major Project of China No. 2018ZX01028-
101-001 and National Natural Science Foundation of China
No.61773307.

REFERENCES

[1] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile
and accurate monocular slam system,” IEEE transactions on robotics,
vol. 31, no. 5, pp. 1147–1163, 2015.

[2] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo and RGB-D cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[3] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 2881–2890.

[4] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[5] E. Rublee, V. Rabaud, K. Konolige, and G. R. Bradski, “Orb: An efficient
alternative to sift or surf.” in ICCV, vol. 11, no. 1. Citeseer, 2011, p. 2.

[6] M. Bosse and R. Zlot, “Continuous 3d scan-matching with a spinning
2d laser,” in 2009 IEEE International Conference on Robotics and
Automation. IEEE, 2009, pp. 4312–4319.

[7] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time.” in Robotics: Science and Systems, vol. 2, 2014, p. 9.
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