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Abstract Three-dimensional models provide a volumetric
representation of space which is important for a variety of
robotic applications including flying robots and robots that
are equipped with manipulators. In this paper, we present an
open-source framework to generate volumetric 3D environ-
ment models. Our mapping approach is based on octrees and
uses probabilistic occupancy estimation. It explicitly repre-
sents not only occupied space, but also free and unknown
areas. Furthermore, we propose an octree map compression
method that keeps the 3D models compact. Our framework is
available as an open-source C++ library and has already been
successfully applied in several robotics projects. We present a
series of experimental results carried out with real robots and
on publicly available real-world datasets. The results demon-
strate that our approach is able to update the representation
efficiently and models the data consistently while keeping
the memory requirement at a minimum.
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1 Introduction

Several robotic applications require a 3D model of the envi-
ronment. These include airborne, underwater, outdoor, or
extra-terrestrial missions. However, 3D models are also rel-
evant for many domestic scenarios, for example, for mobile
manipulation and also navigation tasks.

Although 3D mapping is an integral component of many
robotic systems, there exist few readily available, reliable,
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and efficient implementations. The lack of such implemen-
tations leads to the re-creation of basic software components
and, thus, can be seen as a bottleneck in robotics research. We
therefore believe that the development of an open-source 3D
mapping framework will greatly facilitate the development
of robotic systems that require a 3D geometric representation
of the environment.

Most robotics applications require a probabilistic repre-
sentation, modeling of free, occupied, and unmapped areas,
and additionally efficiency with respect to runtime and mem-
ory usage. We will now discuss these three requirements in
detail.

Probabilistic representation: To create 3D maps, mobile
robots sense the environment by taking 3D range mea-
surements. Such measurements are afflicted with uncer-
tainty: Typically, the error in the range measurements is
in the order of centimeters. But there may also be seem-
ingly random measurements that are caused by reflec-
tions or dynamic obstacles. When the task is to create
an accurate model of the environment from such noisy
measurements, the underlying uncertainty has to be taken
into account probabilistically. Multiple uncertain mea-
surements can then be fused into a robust estimate of the
true state of the environment. Another important aspect is
that probabilistic sensor fusion allows for the integration
of data from multiple sensors and of multiple robots.
Modeling of unmapped areas: In autonomous naviga-
tion tasks, a robot can plan collision-free paths only for
those areas that have been covered by sensor measure-
ments and detected to be free. Unmapped areas, in con-
trast, need to be avoided and for this reason the map has to
represent such areas. Furthermore, the knowledge about
unmapped areas is essential during exploration. When
maps are created autonomously, the robot has to plan
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Fig. 1 3D representations of a tree scanned with a laser range sensor (from left to right): Point cloud, elevation map, multi-level surface map, and
our volumetric (voxel) representation. Please note that our volumetric representation explicitly models free space but that for clarity only occupied
volumes are visualized

its actions so that measurements are taken in previously
unmapped areas.
Efficiency: The map is a central component of any
autonomous system because it is used during action plan-
ning and execution. For this reason, the map needs to be
efficient with respect to access times but also with respect
to memory consumption. From a practical point of view,
memory consumption is often the major bottleneck in
3D mapping systems. Therefore, it is important that the
model is compact in memory so that large environments
can be mapped, a robot can keep the model in its main
memory, and it can be transmitted efficiently between
multiple robots.

Several approaches have been proposed to model 3D envi-
ronments in robotics. As an illustration, we compare our
approach to three common mapping approaches—a visual-
ization of the results is given in Fig. 1. In the example, 3D
measurements are represented using point clouds, elevation
maps (Hebert et al. 1989), multi-level surface maps (Triebel
et al. 2006), and in a volumetric way using our framework.
None of the previous approaches fulfill all of the requirements
we set out above. Point clouds store large amounts of mea-
surement points and hence are not memory-efficient. They
furthermore do not allow to differentiate between obstacle-
free and unmapped areas and provide no means of fusing
multiple measurements probabilistically. Elevation maps and
multi-level surface maps are efficient but do not represent
unmapped areas either. Most importantly, these approaches
cannot represent arbitrary 3D environments, such as the
branches of the tree in the example.

In this work we present OctoMap, an integrated frame-
work based on octrees for the representation of three-
dimensional environments. In our framework, we combine
the advantages of previous approaches to 3D environment
modeling in order to meet the requirements discussed above.
A central property of our approach is that it allows for effi-
cient and probabilistic updates of occupied and free space

while keeping the memory consumption at a minimum.
Occupied space is obtained by the end points of a distance
sensor such as a laser range finder, while free space corre-
sponds to the observed area between the sensor and the end
point. As a key contribution of our approach, we introduce a
compression method that reduces the memory requirement
by locally combining coherent map volumes, both in the
mapped free areas and the occupied space. We implemented
our approach and thoroughly evaluated it using various pub-
licly available real-world robotics datasets of both indoor and
outdoor environments.

Our open source implementation is freely available in
form of a self-contained C++ library. It was released under
the BSD-license and can be obtained from http://octomap.
github.com. The library supports several platforms, such as
Linux, Mac OS, and Windows. It has been integrated into
the robot operating system (ROS) and can be used in other
software frameworks in a straightforward way. Since its first
introduction in 2010 (Wurm et al. 2010), the OctoMap frame-
work was constantly improved and used in an increasing
number of robotics research projects.

This paper is organized as follows. After providing a
detailed discussion of related work in the area of 3D data
structures and mapping approaches in the next section, we
present our OctoMap framework in Sect. 3. Implementation
details are given in Sect. 4, followed by an evaluation of the
proposed framework in Sect. 5. Finally, case studies on how
OctoMap has been used in various areas of robotics demon-
strate the versatility and ease of integration in Sect. 6.

2 Related work

Three-dimensional models of the environment are a key pre-
requisite for many robotic systems and consequently they
have been the subject of research for more than two decades.

A popular approach to modeling environments in 3D is
to use a grid of cubic volumes of equal size, called voxels,
to discretize the mapped area. Roth-Tabak and Jain (1989)
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as well as Moravec (1996) presented early works using such
a representation. A major drawback of rigid grids is their
large memory requirement. The grid map needs to be ini-
tialized so that it is at least as big as the bounding box
of the mapped area, regardless of the actual distribution of
map cells in the volume. In large-scale outdoor scenarios or
when there is the need for fine resolutions, memory consump-
tion can become prohibitive. Furthermore, the extent of the
mapped area needs to be known beforehand or costly copy
operations need to be performed every time the map area is
expanded.

A discretization of the environment can be avoided by
storing 3D range measurements directly. The occupied space
in the environment is then modeled by the 3D point clouds
returned by range sensors such as laser range finders or stereo
cameras. This point cloud approach has been used in several
3D SLAM systems such as those presented by Cole and New-
man (2006) as well as in the SLAM approach of Nüchter et al.
(2007). The drawbacks of this method are that neither free
space nor unknown areas are modeled and that sensor noise
and dynamic objects cannot be dealt with directly. Thus, point
clouds are only suitable for high precision sensors in static
environments and when unknown areas do not need to be
represented. Furthermore, the memory consumption of this
representation increases with the number of measurements
which is problematic as there is no upper bound.

If certain assumptions about the mapped area can be made,
2.5D maps are sufficient to model the environment. Typically,
a 2D grid is used to store the measured height for each cell. In
its most basic form, this results in an elevation map where the
map stores exactly one value per cell (Hebert et al. 1989). One
approach in which such maps have been demonstrated to be
sufficient is the outdoor terrain navigation method described
by Hadsell et al. (2009). Whenever there is a single surface
that the robot uses for navigation, an elevation map is suffi-
cient to model the environment, since overhanging obstacles
that are higher than the vehicle, such as trees, bridges or
underpasses, can be safely ignored. The strict assumption of
a single surface can be relaxed by allowing multiple surfaces
per cell (Triebel et al. 2006; Pfaff et al. 2007), or by using
classes of cells which correspond to different types of struc-
tures (Gutmann et al. 2008). A general drawback of most
2.5D maps is that they do not represent the environment in
a volumetric way but discretize it in the vertical dimension
based on the robot’s height. While this is sufficient for path
planning and navigation with a fixed robot shape, the map
does not represent the actual environment, e.g. for localiza-
tion.

To overcome this problem, a related approach was pro-
posed by Ryde and Hu (2010). The approach stores a list
of occupied voxels for each cell in a 2D grid. Although
this representation is volumetric, it does not differentiate
between free and unknown volumes. Dryanovski et al. (2010)

store lists of occupied and free voxels for each 2D cell in
their multi-volume occupancy grid approach. In contrast to
our approach, however, the map extent needs to be known
beforehand, map updates are more computationally involved,
and there is no multi-resolution capability. Another potential
problem is that subsequent map updates cannot subdivide
existing volumes, leading to an incorrect model of the envi-
ronment. Similarly, Douillard et al. (2010) combine a coarse
elevation map for background structures with object voxel
maps at a higher resolution. In contrast to our work, this
approach focuses on 3D segmentation of single measure-
ments and does not integrate several measurements into a
model of the environment.

In robotic mapping, octrees avoid one of the main short-
comings of fixed grid structures: They delay the initialization
of map volumes until measurements need to be integrated. In
this way, the extent of the mapped environment does not need
to be known beforehand and the map only contains volumes
that have been measured. If inner nodes of a tree are updated
properly, the tree can also be used as a multi-resolution rep-
resentation since it can be cut at any level to obtain a coarser
subdivision. The use of octrees for mapping was originally
proposed by Meagher (1982). Early works mainly focused on
modeling a Boolean property such as occupancy (Wilhelms
and Van Gelder 1992). Payeur et al. (1997) used octrees to
adapt occupancy grid mapping from 2D to 3D and thereby
introduced a probabilistic way of modeling occupied and free
space. A similar approach was used by Fournier et al. (2007)
and Pathak et al. (2007). In contrast to the approach presented
in this paper, however, the authors did not explicitly address
the issues of map compression or bounded confidence in the
map.

An octree-based 3D map representation was also pro-
posed by Fairfield et al. (2007). Their map structure called
Deferred Reference Counting Octree is designed to allow for
efficient map updates, especially in the context of particle fil-
ter SLAM. To achieve map compactness, a lossy maximum-
likelihood compression is performed periodically. Compared
to the compression technique used in our approach, this
discards the probability information for future updates. Fur-
thermore, the problems of overconfident maps and multi-
resolution queries are not addressed.

As a data structure, octrees are applied in a vari-
ety of applications, most notably in the area of com-
puter graphics for efficient rendering (Botsch et al. 2002;
Surmann et al. 2003; Laine and Karras 2010) and in the
field of photogrammetry to store and address large point
clouds (Girardeau-Montaut et al. 2005; Elseberg et al. 2011).
Another popular use case is the compression of static point
clouds (Schnabel and Klein 2006) or point cloud streams
(Kammerl et al. 2012). While our framework is general
enough to also store raw point clouds, its main purpose
is to integrate these point clouds into a memory-efficient,
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volumetric occupancy map, since point clouds as environ-
ment representation in robotics have a number of disadvan-
tages as detailed at the beginning of this section.

Yguel et al. (2007b) presented a 3D map based on the
Haar wavelet data structure. This representation is also multi-
resolution and probabilistic. However, the authors did not
evaluate applications to 3D modeling in-depth. In their eval-
uation, unknown areas are not modeled and only a single
simulated 3D dataset is used. Whether this map structure is
as memory-efficient as octrees is hard to assess without a
publicly available implementation.

Surface representations such as the 3D normal distribu-
tion transform (Magnusson et al. 2007) or Surfels (Habbecke
and Kobbelt 2007) were recently used for 3D path planning
(Stoyanov et al. 2010) and object modeling (Weise et al.
2009; Krainin et al. 2011). Similarly, an accurate real-time
3D SLAM system based on a low-cost depth camera and
GPU processing was proposed by Newcombe et al. (2011)
to reconstruct dense surfaces in indoor scenes. Recently, this
work has been extended to work in larger indoor environ-
ments (Whelan et al. 2012). However, surface representations
are unable to distinguish between free and unknown space,
may require large memory particularly outdoors, and are
often based on strong assumptions about the corresponding
environment. In mobile manipulation scenarios, for exam-
ple, being able to differentiate free from unknown space is
essential for safe navigation.

Finally, to the best of our knowledge, no open source
implementation of a 3D occupancy mapping framework
meeting the requirements outlined in the introduction is
freely available.

3 OctoMap mapping framework

The approach proposed in this paper uses a tree-based rep-
resentation to offer maximum flexibility with regard to the
mapped area and resolution. It performs a probabilistic occu-
pancy estimation to ensure updatability and to cope with
sensor noise. Furthermore, compression methods ensure the
compactness of the resulting models.

3.1 Octrees

An octree is a hierarchical data structure for spatial sub-
division in 3D (Meagher 1982; Wilhelms and Van Gelder
1992). Each node in an octree represents the space contained
in a cubic volume, usually called a voxel. This volume is
recursively subdivided into eight sub-volumes until a given
minimum voxel size is reached, as illustrated in Fig. 2. The
minimum voxel size determines the resolution of the octree.
Since an octree is a hierarchical data structure, the tree can
be cut at any level to obtain a coarser subdivision if the inner

Fig. 2 Example of an octree storing free (shaded white) and occupied
(black) cells. The volumetric model is shown on the left and the corre-
sponding tree representation on the right

Fig. 3 By limiting the depth of a query, multiple resolutions of the
same map can be obtained at any time. Occupied voxels are displayed
in resolutions 0.08, 0.64, and 1.28 m

nodes are maintained accordingly. An example of an octree
map queried for occupied voxels at several resolutions is
shown in Fig. 3.

In its most basic form, octrees can be used to model a
Boolean property. In the context of robotic mapping, this
is usually the occupancy of a volume. If a certain volume is
measured as occupied, the corresponding node in the octree is
initialized. Any uninitialized node could be free or unknown
in this Boolean setting. To resolve this ambiguity, we explic-
itly represent free volumes in the tree. These are created in
the area between the sensor and the measured end point, e.g.,
along a ray determined with raycasting. Areas that are not ini-
tialized implicitly model unknown space. An illustration of
an octree containing free and occupied nodes from real laser
sensor data can be seen in Fig. 4. Using Boolean occupancy
states or discrete labels allows for compact representations of
the octree: If all children of a node have the same state (occu-
pied or free) they can be pruned. This leads to a substantial
reduction in the number of nodes that need to be maintained
in the tree.

In robotic systems, one typically has to cope with sen-
sor noise and temporarily or permanently changing envi-
ronments. In such cases, a discrete occupancy label will
not be sufficient. Instead, occupancy has to be modeled
probabilistically, for instance by applying occupancy grid
mapping (Moravec and Elfes 1985). However, such a prob-
abilistic model lacks the possibility of lossless compression
by pruning.

The approach presented in this paper offers means of com-
bining the compactness of octrees that use discrete labels with
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Fig. 4 An octree map generated from example data. Left point cloud
recorded in a corridor with a tilting laser range finder. Center octree gen-
erated from the data, showing occupied voxels only. Right visualization
of the octree showing occupied voxels (dark) and free voxels (white).

The free areas are obtained by clearing the space on a ray from the
sensor origin to each end point. Lossless pruning results in leaf nodes
of different sizes, mostly visible in the free areas on the right

the updatability and flexibility of probabilistic modeling as
we will discuss in Sect. 3.4.

In terms of data access complexity, octrees require an
overhead compared to a fixed-size 3D grid due to the tree
structure. A single, random query on a tree data structure
containing n nodes with a tree depth of d can be performed
with a complexity of O(d) = O(log n). Traversing the com-
plete tree in a depth-first manner requires a complexity of
O(n). Note that, in practice, our octree is limited to a fixed
maximum depth dmax. This results in a random node lookup
complexity of O(dmax) with dmax being constant. Therefore,
for a fixed depth dmax, the overhead compared to a corre-
sponding 3D grid is constant. Note that in all our experiments
a maximum depth of 16 was used, which is sufficient to cover
a cube with a volume of (655.36 m)3 at 1 cm resolution. The
exact timings for this setting are provided in Sect. 5.5.

3.2 Probabilistic sensor fusion

In our approach, sensor readings are integrated using occu-
pancy grid mapping as introduced by Moravec and Elfes
(1985). The probability P(n | z1:t ) of a leaf node n to be
occupied given the sensor measurements z1:t is estimated
according to

P(n | z1:t )

=
[

1+ 1−P(n | zt )

P(n | zt )

1−P(n | z1:t−1)

P(n | z1:t−1)

P(n)

1−P(n)

]−1

(1)

This update formula depends on the current measure-
ment zt , a prior probability P(n), and the previous estimate
P(n | z1:t−1). The term P(n | zt ) denotes the probability
of voxel n to be occupied given the measurement zt . This
value is specific to the sensor that generated zt . We provide
details on the sensor model used throughout our experiments
in Sect. 5.1.

The common assumption of a uniform prior probability
leads to P(n) = 0.5 and by using the log-odds notation, Eq.
(1) can be rewritten as

L(n | z1:t ) = L(n | z1:t−1) + L(n | zt ), (2)

with

L(n) = log

[
P(n)

1 − P(n)

]
. (3)

This formulation of the update rule allows for faster updates
since multiplications are replaced by additions. In case of
pre-computed sensor models, the logarithms do not have
to be computed during the update step. Note that log-odds
values can be converted into probabilities and vice versa
and we therefore store this value for each voxel instead of
the occupancy probability. It is worth noting that for cer-
tain configurations of the sensor model that are symmetric,
i.e., nodes being updated as hits have the same weight as
the ones updated as misses, this probability update has the
same effect as counting hits and misses similar to Kelly et al.
(2006).

When a 3D map is used for navigation, a threshold on the
occupancy probability P(n | z1:t ) is often applied. A voxel
is considered to be occupied when the threshold is reached
and is assumed to be free otherwise, thereby defining two
discrete states. From Eq. (2) it is evident that to change the
state of a voxel we need to integrate as many observations
as have been integrated to define its current state. In other
words, if a voxel was observed free for k times, then it has
to be observed occupied at least k times before it is con-
sidered occupied according to the threshold (assuming that
free and occupied measurements are equally likely in the
sensor model). While this property is desirable in static envi-
ronments, a mobile robot is often faced with temporary or
permanent changes in the environment and the map has to
adapt to these changes quickly. To ensure this adaptability,
Yguel et al. (2007a) proposed a clamping update policy that
defines an upper and lower bound on the occupancy esti-
mate. Instead of using Eq. (2) directly, occupancy estimates
are updated according to
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L(n | z1:t )
= max(min (L (n | z1:t−1) + L (n | zt ) , lmax) , lmin), (4)

where lmin and lmax denote the lower and upper bound on
the log-odds value. Intuitively, this modified update formula
limits the number of updates that are needed to change the
state of a voxel. Applying the clamping update policy in our
approach leads to two advantages: we ensure that the con-
fidence in the map remains bounded and as a consequence
the model can adapt to changes in the environment quickly.
Furthermore, we are able to compress neighboring voxels
with pruning (see Sect. 3.4). As we will discuss in Sect. 5.4,
this leads to a considerable reduction in the number of voxels
that have to be maintained. The compression achieved with
clamping is no longer completely lossless in terms of the full
probabilities, since information close to zero and one is lost.
In between the clamping thresholds, however, full probabil-
ities are preserved.

3.3 Multi-resolution queries

When measurements are integrated into our map structure,
probabilistic updates are performed only for the leaf nodes
in the octree. But since an octree is a hierarchical data struc-
ture, we can make use of the inner nodes in the tree to enable
multi-resolution queries. Observe that we yield a coarser sub-
division of the 3D space when the tree is traversed only up
to a given depth that is not the depth of the leaf nodes.
Each inner node spans the volume that its eight children
occupy, so to determine the occupancy probability of an inner
node, we have to aggregate the probabilities of its children.
Several strategies could be pursued to determine the occu-
pancy probability of a node n given its eight sub-volumes ni

(Kraetzschmar et al. 2004). Depending on the application at
hand, either the average occupancy

l̄(n) = 1

8

8∑
i=1

L(ni ) (5)

or the maximum occupancy

l̂(n) = max
i

L(ni ) (6)

can be used, where L(n) returns the current log-odds occu-
pancy value of a node n. Using the maximum child occupancy
to update inner nodes can be regarded a conservative strategy
which is well suited for robot navigation. By assuming that a
volume is occupied if any part of it has been measured occu-
pied, collision-free paths can be planned and for this reason
the maximum occupancy update is used in our system. Note
that in an even more conservative setting, L(n) can be defined
to return a positive occupancy probability for unknown cells
as well. An example of an octree queried for occupied voxels
at several resolutions is shown in Fig. 3.

3.4 Octree map compression

In Sect. 3.1, we explained how tree pruning can reduce the
amount of redundant information in octrees with discrete
occupancy states in which a voxel can be either occupied or
free. The same technique can also be applied in maps that use
probabilistic occupancy estimates to model occupied and free
space. In general, however, one cannot expect the occupancy
probability of neighboring nodes to be identical, even if both
voxels are occupied by the same physical obstacle. Sensor
noise and discretization errors can lead to different probabil-
ities and therefore interfere with compression schemes that
rely on identical node information. A possible solution to
this problem is to apply a threshold on the voxel probabil-
ity, for example 0.5, and in this way generate a discrete state
estimation as suggested by Fairfield et al. (2007). With that
approach, however, individual probability estimates cannot
be recovered after the tree has been pruned.

In our approach, we achieve map compression by applying
the clamping update policy given in Eq. (4). Whenever the
log-odds value of a voxel reaches either the lower bound lmin

or the upper bound lmax, we consider the node as stable in our
approach. Intuitively, stable nodes have been measured free
or occupied with high confidence. In a static environment, all
voxels will converge to a stable state after a sufficient number
of measurements have been integrated. With the parameters
chosen in our experiments, for example, five agreeing mea-
surements are sufficient to render an unknown voxel into a
stable voxel. If all children of an inner tree node are stable leaf
nodes with the same occupancy state, then the children can
be pruned. Should future measurements be integrated that
contradict the state of the corresponding inner node, then its
children are regenerated and updated accordingly. Applying
this compression only leads to a loss of information close to
P(n) = 0 and P(n) = 1 while preserving the probabilities in
between. In our experiments, combining octree pruning and
clamping leads to a compression improvement of up to 44 %.

In many robotic navigation tasks such as obstacle avoid-
ance or localization, only the maximum likelihood map con-
taining either free or occupied nodes is sufficient. In these
cases, a lossy compression based on the occupancy thresh-
old, as suggested by Fairfield et al. (2007), can be performed.
For this compression, all nodes are converted to their max-
imum likelihood (clamped) probabilities, followed by tree
pruning. This yields an even greater compression and less
memory requirements.

3.5 Extensions

3.5.1 Maps with rich information

Octree nodes can be extended to store additional data to
enrich the map representation. Voxels could, for example,
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Fig. 5 Detail of a volumetric indoor OctoMap containing color infor-
mation. The complete map covers an area of 7.3 × 7.9 × 4.6 m at 2 cm
resolution

store terrain information, environmental data such as the tem-
perature, or color information. Each additional voxel prop-
erty requires a method that allows several measurements to be
fused. As an example, we extended our mapping framework
to store the average color of each voxel. This creates visual-
izations for the user and enables a color-based classification
of the environment or appearance-based robot localization
from virtual views (similar to Einhorn et al. 2011; Mason
et al. 2011). It can also be used as a starting point to create
colored, high-resolution surface meshes (Hoppe et al. 1992).
Figure 5 shows an octree map that was created by integrating
colored point clouds recorded with a hand-held Microsoft
Kinect sensor. The data is available in the sequence called
freiburg1_360 of the RGBD-dataset (Sturm et al. 2012) and
was aligned using RGB-D SLAM (Endres et al. 2012).

3.5.2 Octree hierarchies

We developed an extension to our mapping approach that
exploits hierarchical dependencies in the environment (Wurm
et al. 2011). This extension maintains a collection of submaps
in a tree-structure, where each node represents a subspace of
the environment. The subdivision applied in our system is
based on a user-defined segmentation of the input and on
a given spatial relation that expresses the relation between
segments.

Figure 6 gives an illustration of a hierarchy that is based
on the assumption that objects are located on top of support-
ing planes. In this application, we first estimated supporting
planes in the input. Objects on top of these supporting planes
were then segmented in the input data and modeled in indi-
vidual volumetric submaps. As a result, the table is a submap
that is on top of the floor and several household objects are
in turn represented as submaps on top of the table.

Fig. 6 Hierarchical octree model of a tabletop scene. Background (yel-
low), table (magenta), and objects (cyan) are represented by individual
octree maps of different resolutions

Compared to a single, monolithic map of the environment,
our hierarchical approach exhibits a number of advantages:
First, each submap is maintained independently and map-
ping parameters such as the resolution can be adapted for
each submap. Second, submaps can be manipulated inde-
pendently. For example, one of the submaps representing an
individual object can be moved while the rest remains static.
Third, hierarchical dependencies of submaps can be encoded
in the hierarchy. For example, all objects on a table can be
associated to this table and if the table is moved then the
objects are moved along with it.

The approach has been evaluated in the context of tabletop
manipulation. Objects on a table were mapped at very fine
resolutions while the table and background structures were
mapped at lower resolutions. This approach led to models
that were about an order of magnitude more compact than a
single map that represents the complete scene.

4 Implementation details

4.1 Memory-efficient node implementation

In a straight-forward octree implementation, each node in the
tree stores in addition to the data payload the coordinate of
its center location, its voxel size, and pointers to its children.
This, however, can lead to a substantial memory overhead.
Since the node location and its voxel size can be reconstructed
while traversing the octree, we do not explicitly store this
information in the nodes to reduce the memory overhead.

In general, octree nodes need to maintain an ordered list
of their children. This can be directly achieved by using eight
pointers per node. If sparse data are modeled, the memory
requirement of those pointers (8 × 4 byte = 32 byte on a
32-bit architecture) will lead to a significant memory over-
head (Wilhelms and Van Gelder 1992). We overcome that by
using one child pointer per node that points to an array of
eight pointers (Fig. 7, left). This array is only allocated if the
node indeed has children and is not allocated for leaf nodes.
Thus, any leaf node in the octree only stores the mapping data
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Fig. 7 Left the first nodes of the octree example from Fig. 2 in memory
connected by pointers. Data is stored as one float denoting occupancy.
Right the complete tree from Fig. 2 as compact serialized bit-stream.
All maximum-likelihood occupancy information can be stored serially
in only six bytes, using two bits for each of a node’s eight child labels
(00: unknown; 01: occupied; 10: free; 11: inner node with child next in
the stream)

itself (e.g., the occupancy probability) and one (null) pointer.
Inner nodes additionally store eight pointers to their chil-
dren. In the robotics-related datasets used in our evaluation,
80– 85 % of the octree nodes are leafs. In our experiments, the
above-mentioned implementation saves 60– 65 % of memory
compared to allocating eight pointers for each node.

To store a per-voxel occupancy probability, a single float
value (usually 4 byte) is sufficient to represent the log-odds
value. This results in a node size of 40 byte for inner nodes
and 8 byte for leafs on a 32-bit architecture. Note that most
compilers align member data in memory for runtime effi-
ciency, that is, the data of a node is padded to be multiples
of one word large (4 byte on a 32-bit architecture). 64-bit
architectures can address large amounts of memory at the
cost of pointers and words having twice the size. On such
architectures, the memory size of inner nodes increases to 80
byte and the size of leaf nodes to 16 byte. Note that the actual
size of the data structure (76 byte for inner nodes and 12 byte
for leaf nodes) is again padded to multiples of the word size
(8 byte on a 64-bit architecture) by most compilers.

In our approach, the octree is homogeneous by design,
that is, all nodes have the same structure and store occupancy.
While inner nodes could potentially save 8 byte by omitting
occupancy information, maintaining it according to Eq. (5)
or (6) enables multi-resolution queries, where tree traversal
is stopped at a fixed depth.

Virtual inheritance between classes allows dynamic dis-
patch during run-time, at the cost of one extra pointer to the
virtual function table (vtable) for each object instance. To
minimize the memory footprint, we avoided this overhead in
the octree node implementation. We apply direct inheritance
and casts for the nodes, and use virtual inheritance only in
the octree classes. This method results in an overhead of the
size of only one pointer per octree map.

4.2 Octree types

The most common octree and node types in our framework
are summarized in Fig. 8 as a UML diagram. The basic

Fig. 8 UML diagram of the most common octree and node classes

octree functionality is implemented in OcTreeBase, and the
basic node functionality is implemented in OcTreeDataN-
ode. OcTreeDataNode is templated over data that is stored
in the node while OcTreeBase is templated over the node
type. OccupancyOcTreeBase adds occupancy mapping func-
tionality to the tree implementation, such as scan insertions
and ray casting. The main occupancy octree class OcTree
derives from OccupancyOcTreeBase using OcTreeNode for
its nodes. This structure allows for flexible extensions of
our framework at different levels, e.g., to extend nodes with
custom data or to add new functionality to the octree. One
example is the implementation of ColorOcTree that uses
ColorOcTreeNodes (illustrated in Fig. 5). These nodes store
color in addition to an occupancy estimate, as introduced in
Sect. 3.5.1.

The maximum tree depth is limited to 16 levels in our cur-
rent implementation. This enables fast tree traversals by using
computable voxel addresses. However, the depth limit also
poses a limit on the maximum spatial extent of the octree. At
a resolution of 1 cm, for example, the map can cover a maxi-
mum of 216 × 0.01 m = 655.36 m in each dimension. While
this is sufficient for most indoor applications, the implemen-
tation can directly be extended to 32 depth levels, allowing
to cover 232 × 0.01 m = 42 949 672.96 m at a resolution of
1 cm.

4.3 Map file generation

Many robotic applications require maps to be stored in files.
This includes cases where a map is generated during a setup
phase and is later used by mobile robots for path planning
and localization. Another scenario is a multi-robot system
where maps are exchanged between robots. In either case, a
compact serialized representation is required to minimize the
consumption of disk space or communication bandwidth.

The most compact files can be generated whenever a max-
imum likelihood estimate of the map is sufficient for the task
at hand. In this case the per-node probabilities are discarded.
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As motivated above, volumes in which no information has
been recorded can be of special interest in robotic systems,
for example, during exploration. For this reason, we explic-
itly differentiate between free and unknown areas and encode
nodes as either occupied, free, unknown, or as inner nodes in
our map files. Using these labels, octree maps can be recur-
sively encoded as a compact bit stream. Each node is rep-
resented only by the eight labels of its children. Beginning
at the root node, each child that is not a leaf is recursively
added to the bit stream. Leaf nodes do not have to be added
since they can be reconstructed from their label during the
decoding process. Figure 7 (right) illustrates the bit-stream
encoding. Each row represents one node with the upper row
corresponding to the root node. The last row only contains
leafs so no further nodes are added.

In this maximum likelihood representation, each node
occupies 16 bits of memory, 2 bits per child, resulting in
a compact map file. In our experiments, file sizes never
exceeded 15 MB even for large outdoor environments at a
fine resolution (see Sect. 5.4 for details).

There exist applications in which all information in a map
needs to be stored and maintained. This includes cases in
which hard disk space is used as a secondary memory and
maps are temporarily saved to disk until they need to be
accessed again. Another use case is the storage of additional
node data such as color or terrain information which would
be lost in a maximum likelihood encoding. In these cases, we
encode nodes by storing their data (occupancy and additional
data) and eight bits per node which specify whether a child
node exists. This, however, results in considerably larger files
as we will show in the experiments.

Note that, analog to the octree representation in memory,
the serialized stream does not contain any actual 3D coordi-
nates. To reconstruct a map, only the location of the root node
needs to be known. All other spatial relationships between
the nodes are implicitly stored in the encoding.

4.4 Our OctoMap implementation

OctoMap is available as a self-contained C++ library. It is
released under the BSD-license and can be obtained from
http://octomap.github.com. The source code is thoroughly
documented and the library uses CMake to support sev-
eral platforms (Linux and Mac OS X with GCC, Windows
with MinGW or Visual Studio). Within the Robot Operat-
ing System (ROS), OctoMap is available as a pre-compiled
Debian package, e.g., for the Ubuntu distribution.1 Further
ROS integration is available in the packages octomap_ros
and octomap_msgs.

OctoMap can be easily integrated into any other frame-
work by compiling and linking against it with the help of

1 http://www.ros.org/wiki/octomap

Fig. 9 The OctoMap visualization application octovis

pkg-config, or with the find_package mechanism in the
CMake build system.

An OpenGL-based 3D visualization application is avail-
able along with the library to view stored octree files and to
incrementally build up maps from range data, which eases
troubleshooting and map data inspection (see Fig. 9). It also
offers basic editing functionality.

4.4.1 Integrating sensor measurements

Individual range measurements are integrated using ray-
casting by calling the method insertRay(·) of the occupancy
octree class OcTree. This updates the end point of the mea-
surement as occupied while all other voxels along a ray to
the sensor origin are updated as free.

Point clouds, e.g., from 3D laser scans or stereo cameras
are integrated using insertScan(·). This batch operation has
been optimized to be more efficient than tracing each single
ray from the origin.

Finally, a single node in the octree can be updated with a
point measurement by calling updateNode(·).

4.4.2 Accessing data

Individual octree nodes can be accessed by searching for their
coordinate. For efficient batch queries, our implementation
provides iterators to traverse the octree analogous to a stan-
dard C++ container class. With these iterators, all nodes, leaf
nodes, or leaf nodes in a certain bounding box can be queried
or they can be filtered according to further criteria.

Ray intersection queries, i.e., casting a ray from an origin
into a given direction until it hits an occupied volume, are
an important use-case for a 3D map in robotics. This kind of
query is used for visibility checks or to localize with range
sensors. Thus, we provide this functionality in the castRay(·)
method.
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5 Evaluation

The approach presented in this paper has been evaluated
using several real world datasets as well as simulated ones.
The experiments are designed to verify that the proposed
representation is meeting the requirements formulated in
the introduction. More specifically, we demonstrate that our
approach is able to adequately model various types of envi-
ronments and that it is an updatable and flexible map structure
that can be compactly stored.

For evaluation, we used the current implementation of
OctoMap 1.5.3.2 The evaluated datasets are available online3

and can be converted from 3D point clouds into octree maps
with the tool graph2tree, which also prints all necessary
statistics.

5.1 Sensor model for laser range data

OctoMap can be used with any kind of distance sensor, as
long as an inverse sensor model is available. Since our real-
world datasets were mostly acquired with laser range find-
ers, we employ a beam-based inverse sensor model which
assumes that endpoints of a measurement correspond to
obstacle surfaces and that the line of sight between sensor
origin end endpoint does not contain any obstacles. The occu-
pancy probability of all volumes is initialized to the uniform
prior of P(n) = 0.5. To efficiently determine the map cells
which need to be updated, a ray-casting operation is per-
formed that determines voxels along a beam from the sensor
origin to the measured endpoint. For efficiency, we use a
3D variant of the Bresenham algorithm to approximate the
beam (Amanatides and Woo 1987). Volumes along the beam
are updated as described in Sect. 3.2 using the following
inverse sensor model:

L(n | zt ) =
{

locc if beam is reflected within volume
lfree if beam traversed volume

(7)

Throughout our experiments, we used log-odds values of
locc = 0.85 and lfree = −0.4, corresponding to probabilities
of 0.7 and 0.4 for occupied and free volumes, respectively.
The clamping thresholds are set to lmin = −2 and lmax = 3.5,
corresponding to the probabilities of 0.12 and 0.97. We
experimentally determined these values to work best for our
use case of mapping mostly static environments with laser
range finders, while still preserving map updatability for
occasional changes. By adapting these changeable thresh-
olds, a stronger compression can be achieved. As we will
evaluate in Sect. 5.6, there is a trade-off between map confi-
dence and compression.

2 https://github.com/OctoMap/octomap/archive/v1.5.3.tar.gz
3 http://ais.informatik.uni-freiburg.de/projects/datasets/octomap

sensor

sensor
surface

surface

Fig. 10 A laser scanner sweeps over a flat surface at a shallow angle
by rotating. A cell measured occupied in the first scan (top) is updated
as free in the following scan (bottom) after the sensor rotated. Occupied
cells are visualized as gray boxes, free cells are visualized in white

Fig. 11 A simulated noise-free 3D laser scan (left) is integrated into
our 3D map structure. Sensor sweeps at shallow angles lead to undesired
discretization effects (center). By updating each volume at most once,
the map correctly represents the environment (right). For clarity, only
occupied cells are shown

Discretization effects of the ray-casting operation can lead
to undesired results when using a sweeping laser range finder.
During a sensor sweep over flat surfaces at shallow angles,
volumes measured occupied in one 2D scan may be marked
as free in the ray-casting of following scans. This effect is
illustrated in Fig. 10. Such undesired updates usually cre-
ates holes in the modeled surface, as shown in the example
in Fig. 11. To overcome this problem, we treat a collection
of scan lines in a sensor sweep from the same location as
single 3D point cloud in our mapping approach. Since mea-
surements of laser scanners usually result from reflections at
obstacle surfaces, we ensure that the voxels corresponding to
endpoints are updated as occupied. More precisely, whenever
a voxel is updated as occupied according to Eq. (7), it is not
updated as free in the same measurement update of the map.
By updating the map in this way, the described effect can be
prevented and the environment is represented accurately, as
can be seen in Fig. 11 (right).

5.2 3D models from real sensor data

In this experiment, we demonstrate the ability of our
approach to model real-world environments. A variety of
different datasets has been used. Note that the free space was
explicitly modeled in the experiments but is not shown in the
figures for clarity.
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Fig. 12 3D map of the FR-079
corridor dataset, as seen from
the top. The structure of the
adjacent rooms has been
partially observed through the
glass doors (size of the scene:
43.7 × 18.2 × 3.3 m3)

The indoor dataset called FR-079 corridor was recorded
using a Pioneer2 AT platform equipped with a SICK LMS
laser range finder on a pan-tilt unit. We reduced odometry
errors by applying a 3D scan matching approach. The robot
traversed the corridor of building 079 at the Freiburg campus
three times, resulting in 66 3D scans with 6 million end points
in total. When processing this dataset, we limited the max-
imum range of the laser beams to 10 m. This removes stray
measurements outside of the building which were observed
through windows. Figure 12 shows the resulting map.

A fairly large outdoor dataset was recorded at the com-
puter science campus in Freiburg.4 It consists of 81 dense 3D
scans covering an area of 292 × 167 m2 along a trajectory of
723 m. This dataset contains a total of 20 million end points.
In a further experiment, we used laser range data of the New
College data set (Smith et al. 2009) (Epoch C, 14 million
end points in total). This data was recorded in a large-scale
outdoor environment with two fixed laser scanners sweeping
to the left and right side of the robot as it advances. For this
dataset, an optimized estimate of the robot’s trajectory gen-
erated by visual odometry was used (Sibley et al. 2009). The
resulting outdoor maps are shown in Fig. 13.

Finally, we integrated data of the freiburg1_360 RGBD-
dataset into our map representation with a total of 210 million
end points from the Microsoft Kinect sensor (see Sect. 3.5.1).
The final map, visualized in Fig. 5, represents an office envi-
ronment at a resolution of 2 cm. In this map, we additionally
stored per-voxel color information.

5.3 Map accuracy

This experiment demonstrates how accurate a 3D map repre-
sents the data that was used to build that map. Note that this

4 Courtesy of B. Steder, available at http://ais.informatik.uni-freiburg.
de/projects/datasets/fr360/

particular evaluation is independent of the underlying octree
structure since our mapping approach is able to model the
same data as a 3D grid. We measure the accuracy as the per-
centage of correctly mapped cells in all 3D scans. A 3D map
cell counts as correctly mapped, if it has the same maximum-
likelihood state (free or occupied) in the map and the evalu-
ated 3D scan. The scan is hereby treated as if it were inserted
into the already-built map, i.e., endpoints must be occupied
and all cells along a ray between the sensor and the endpoint
must be free. As a second measure, we cross-validate the map
by skipping each fifth scan when building the map, and using
these skipped scans to evaluate the percentage of correctly
mapped cells.

The results in Table 1 show that our mapping approach
accurately represents the environment. The remaining error
is most likely due to sensor noise, discretization effects, or a
not completely perfect scan alignment. The cross-validation
results only lose little accuracy, which demonstrates that
the probabilistic sensor model yields realistic and predictive
results.

5.4 Memory consumption

In this experiment, we evaluate the memory consumption
of our approach. Several datasets were processed at various
tree resolutions. We analyzed the memory usage of our repre-
sentation with and without performing octree compression,
as well as the maximum-likelihood compression that con-
verts each node to be either completely free or occupied. For
comparison, we also determined the amount of memory that
would be required by an optimally aligned 3D grid of mini-
mal size that is initialized linearly in memory. According to
Sect. 4.1, the memory consumption of occupancy stored in
an octree on a 32-bit architecture is given by

memtree = ninner × 40 B + nleafs × 8 B , (8)
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Fig. 13 Resulting octree maps
of two outdoor environments at
0.2 m resolution. For clarity,
only occupied volumes are
shown with height visualized by
a color (gray scale) coding. Top
Freiburg campus dataset (size of
the scene: 292 × 167 × 28 m3),
bottom New College dataset
(size of the scene:
250 × 161 × 33 m3)

Table 1 Map accuracy and cross-validation as percentage of correctly
mapped cells between evaluated 3D scans and the built map. For the
accuracy, we used all scans for map construction and evaluation. For
cross-validation, we used 80 % of all scans to build the map, and the
remaining 20 % for evaluation

Map dataset Accuracy (%) Cross-validation (%)

FR-079 corridor (5 cm) 97.27 96.00
Freiburg campus (10 cm) 97.89 95.80
New College (Ep. C) (10 cm) 98.79 98.46

where ninner is the number of inner nodes and nleafs the num-
ber of leaf nodes. The size of the minimal 3D grid storing the
same information (one float for the occupancy probability)
is given by

memgrid = x × y × z

r3 4 B , (9)

where x, y, z is the size of the map’s minimal bounding box
in each dimension and r is the map resolution.

We furthermore wrote each map to disk using the full prob-
abilistic model and the compressed binary format described
in Sect. 4.3, and evaluated the resulting file sizes.

The memory usage for exemplary resolutions is given in
Table 2. It can be seen that high compression ratios can
be achieved especially in large outdoor environments. Here,
pruning will merge considerable amounts of free space vol-
umes and areas of unknown space don’t use any memory.
Note that a 3D grid of the outdoor data sets with a resolu-
tion of 10 cm would not even fit into the addressable main
memory of a 32-bit machine. On the other hand, our map
structure is also able to model fine-graded indoor environ-
ments with moderate memory requirements. In very con-
fined spaces, an optimally aligned 3D grid may take less
memory than an uncompressed mapping octree. However,
this effect is diminished as soon as compression techniques
are used.

The evolution of memory consumption over time is shown
in Fig. 14. Memory usage grows when the robot explores
new areas (scans 1–22 and 39–44 in FR-079 corridor, scans
1–50 and 65–81 in Freiburg campus). In the remaining
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Table 2 Memory consumption of different octree compression types
compared to full 3D occupancy maps (called 3D grid) on a 32-bit archi-
tecture. Octree compression in memory is achieved by merging identical
children into the parent node (called Pruned). A more efficient but more
lossy compression in memory is achieved by converting each node to

its maximum-likelihood value (completely free or occupied) followed
by pruning the complete tree. A maximum-likelihood tree containing
only free and occupied nodes can then be serialized to a compact binary
file format (called Lossy file)

Map dataset Mapped area (m3) Res. (cm) Mem. 3D grid (MB) Memory w. octree compression (MB) File size (MB)

None Pruned Maximum likelihood Full Lossy

FR-079 corridor 43.7 × 18.2 × 3.3 5 78.88 73.55 41.62 24.72 15.76 0.67
10 10.01 10.87 7.22 5.02 2.70 0.14

Freiburg campus 292 × 167 × 28 10 5162.90 1257.57 990.66 504.76 379.70 13.82
20 648.52 187.93 130.24 74.12 49.68 2.00
80 10.58 4.55 4.12 3.09 1.53 0.08

New College (Ep. C) 250 × 161 × 33 10 5058.76 607.92 395.42 230.33 148.75 6.40
20 633.64 91.33 50.57 35.95 18.65 0.99
80 10.13 2.34 1.79 1.69 0.63 0.05

freiburg1_360 (RGBD) 7.9 × 7.3 × 4.6 2 252.99∗ 159.97∗ 45.52∗ 20.05 21.59∗ 0.52
5 16.19∗ 11.24∗ 4.55∗ 2.52 2.11∗ 0.07

∗ Voxels contain the full color information from the RGBD dataset

time, previously mapped areas were revisited where mem-
ory usage remained nearly constant or even decreased due to
pruning.

As expected, memory usage increases exponentially with
the tree resolution. This effect can be seen in Fig. 15, where
we used a logarithmic scaling in the plot.

Table 2 gives the file sizes of the serialized binary maxi-
mum likelihood map (denoted as “Lossy”) and the full proba-
bilistic model (“Full”). Note that map files can be compressed
even further by using standard file compression methods.
Even maps of the fairly large outdoor datasets Freiburg
campus and New College result in file sizes of less than
14 MB.

5.5 Runtimes

In the following experiments, we analyzed the time required
to integrate and access data in our framework. All runtimes
were evaluated on a single core of a standard desktop CPU
(Intel Core i7-2600, 3.4 GHz) for various map data sets.

5.5.1 Map generation

First, we analyzed the time required to generate maps by
integrating range data. This time depends on the map reso-
lution and the length of the beams that are integrated. We
processed the FR-079 corridor and Freiburg campus datasets
both with the full laser range (up to 50 m) and with a limited
maximum range of 10 m for several resolutions. The average
insert times for one beam are given in Fig. 16.

In our experiments, 3D scans usually consisted of about
90,000–250,000 valid measurements. Typically, such a scan
could be integrated into the map in less than a second.
This demonstrates that our current implementation can cope
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Fig. 14 Memory usage while mapping the two data sets FR-079 cor-
ridor and Freiburg campus

even with the demanding data of RGBD-cameras that out-
put up to 300,000 points at fast frame rates, albeit at shorter
ranges.

With long measurement beams and large outdoor areas as
in the Freiburg campus dataset, a speedup can be obtained by
limiting the map update range. Indoors, however, where only
few sensor beams reach far, there is no noticeable speedup
by limiting the sensor range.
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Fig. 15 Effect of resolution on memory usage of the Freiburg campus
dataset. Note that a logarithmic scaling is used
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Fig. 17 Time to traverse all octree leaf nodes in several maps. By
limiting the depth of the query (called depth cutoff) a coarser map is
traversed

5.5.2 Map queries

We evaluated the time to traverse all leaf nodes (free or occu-
pied) in an existing map using iterators (see Sect. 4.4.2). The
depth of a query can be limited during run time which in our
data structure is equivalent to a map query in a coarser map.
This allows for more efficient tree traversals in those cases
when a coarser resolution is sufficient.

Figure 17 shows the time to traverse several maps to their
maximum tree depth of 16 corresponding to the full map

resolution (depth cutoff=0). The plot furthermore gives the
times to query all leaf nodes when the query depth is limited.
Each increment in the depth cutoff doubles the edge length
of the smallest voxels and speeds up the traversal by a factor
of about two. It can be seen that map traversals are efficient.
Even at full map resolution, the large map of the Freiburg
campus containing 1,087,014 occupied and 3,377,882 free
leaf nodes can be traversed within 51 ms.

5.6 Clamping parameters

Finally, we analyzed the impact of the clamping thresholds on
map accuracy and compression. Since these thresholds pro-
vide a lower and upper bound for the occupancy probability,
information close to P = 0 and P = 1 is lost compared to
the full map with no clamping. A clamped map represents
an approximation of the full map, thus we use the Kullback–
Leibler divergence (KLD) summed over the complete map as
measure. Since occupancy is a binary random variable with
the discrete states free and occupied, the KLD of a clamped
map Mc from the full map M f can be computed by summing
over all map nodes n:

KLD(M f , Mc)

=
∑

n

(
ln

(
P(n)
Q(n)

)
P(n) + ln

(
1−P(n)
1−Q(n)

)
(1 − P(n))

)
, (10)

where P(n) is the occupancy probability of node n in M f ,
and Q(n) in Mc.

The results for a series of occupancy ranges from [0 : 1] (no
clamping, lossless) to [0.4 : 0.6] (strong clamping, most loss)
and different maps can be seen in Fig. 18. The values for our
chosen default threshold [0.12 : 0.97] are shown as thin hor-
izontal lines, dashed blue for the memory consumption and
red for the KLD. This clamping range was chosen primar-
ily to work best in the context of laser-based mapping and
occasional changes in the environment, such as people mov-
ing through the scans or doors closing. As can be seen, a
stronger compression can be achieved with higher clamping,
at the cost of losing map confidence. In the most degener-
ated case, one sensor update can be enough to mark a voxel
as completely free or occupied, losing any ability to filter
noise with a probabilistic update. Note that, while clamping
is beneficial for map compression, even with no clamping
the lossless compressed maps are smaller than a 3D grid (cf.
Table 2).

6 Case studies

Since its first introduction in 2010 (Wurm et al. 2010), the
OctoMap framework received a considerable interest and
has been used in several applications. These include 6D
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Fig. 18 Effect of different clamping ranges on map compression and
accuracy in our three datasets. A higher clamping, resulting in a
smaller occupancy range, increases the efficiency of the octree compres-
sion (memory consumption, dashed blue). The Kullback–Leibler diver-
gence (KLD, red) measures the information loss between the unclamped
map with full probabilities in [0:1] and a clamped representation. Our
default clamping range [0.12:0.97] is shown for comparison by hori-
zontal lines in blue (dashed) for memory consumption and red for the
KLD

localization (Hornung et al. 2010), autonomous navigation
with air vehicles (Heng et al. 2011; Müller et al. 2011),
autonomous navigation with humanoid robots (Oßwald et al.
2012; Maier et al. 2012), 3D exploration (Shade and Newman
2011; Dornhege and Kleiner 2011), 3D SLAM (Hertzberg
et al. 2011), 3D arm navigation (Ciocarlie et al. 2010), seman-
tic mapping (Blodow et al. 2011), and navigation in cluttered
environments (Hornung et al. 2012).

In the following, we will describe some of these use cases
in more detail in order to demonstrate the versatility and ease
of integration of the OctoMap library.

6.1 Localization in 3D

In our previous work (Hornung et al. 2010), we developed a
localization method based on OctoMap as 3D environment
model. In this approach, the 6D torso pose of a humanoid
robot in a complex indoor environment is tracked with Monte
Carlo localization based on 2D laser range measurements,
as well as IMU and joint encoder data. For the particle filter
observation model, we first used the endpoint model and later
an optimized ray-casting method in combination with visual
observations for local refinement (Oßwald et al. 2012). The
resulting localization is highly accurate and even enables the
humanoid to climb spiral staircases. Our implementation is
available open-source5 and uses the ray-casting functionality
in OctoMap (see Sect. 4.4.2). This enables the re-use for other
robot localization systems.

6.2 Tabletop manipulation

The ROS collider package6 builds a collision map based on
3D point clouds. Sensor data from several sources, such as a
tilting laser and a stereo camera, are fused using OctoMap.
Octree nodes were extended to store a time stamp attribute
that allows to gradually clear out nodes in dynamically chang-
ing environments. This new collision map enables the ROS
arm navigation and grasping pipeline (Ciocarlie et al. 2010)
to dynamically react to changes and to cope with sensor noise.
In contrast to the previous fixed-size voxel grid, the new
implementation allows for an initially unbounded workspace,
the integration of data from multiple sensors, and it is more
memory-efficient.

6.3 Navigation in cluttered environments

OctoMap was furthermore used to create a navigation module
for mobile manipulation. In this project, a PR2 robot picked
up large objects from one table with two arms and carried
it to another table through narrow passages (Hornung et al.
2012). The system integrates 3D sensor data in OctoMap.
The resulting 3D occupancy map is then used to perform
collision checks based on the robot’s full kinematic configu-
ration and the attached objects. Multi-layered projected 2D
maps and an anytime planner using motion primitives allow
for planning in almost real time with bounded sub-optimality.
The navigation system and incremental mapping framework
based on OctoMap are both available open-source in ROS.7

5 http://www.ros.org/wiki/humanoid_localization
6 http://www.ros.org/wiki/collider
7 http://www.ros.org/wiki/3d_navigation and http://www.ros.org/
wiki/octomap_server
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7 Conclusion

In this paper, we presented OctoMap, an open source frame-
work for three-dimensional mapping. Our approach uses
an efficient data structure based on octrees that enables
a compact memory representation and multi-resolution
map queries. Using probabilistic occupancy estimation, our
approach is able to represent volumetric 3D models that
include free and unknown areas. The proposed approach
uses a bounded per-volume confidence that allows for a loss-
less compression scheme and leads to substantially reduced
memory usage. We evaluated our approach with various real-
world data sets. The results demonstrate that our approach is
able to model the environment in an accurate way and, at the
same time, minimizes memory requirements.

OctoMap can easily be integrated into robotic systems and
has already been successfully applied in a variety of robotic
projects. The implementation is available as BSD-licensed
C++ source code. Data sets are available online to verify our
experimental results and to compare against them.
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